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LElTER TO THE EDITOR 

The large-N limit of the threshold values in Mandelbrot’s 
fractal percolation process? 

J T Chayes and L Chayes 
Department of Mathematics, University of California, Los Angeles, CA 90024, USA 

Received 8 March 1989 

Abstract. We consider Mandelbrot’s fractal percolation process, characterised by a density 
parameter p E (0,l)  and an integer subdivision index N > 1. For each N, the process is 
known to have a percolation transition at density p , ( N )  E ( 0 , l ) .  We prove that 

where pc  is the threshold value of the ordinary square lattice site percolation model. 

Mandelbrot (1974,1983) introduced and studied a continuum percolation problem 
which generates random fractal structures. In the original work, the model was called 
the canonical curdling process; here we will refer to it as Mandelbrot’s fractal percola- 
tion process. Roughly speaking, the process is an iteration of a construction in which 
the unit square is divided into N 2  squares of equal area, each of which is retained 
independently with probability p .  Mandelbrot (1983) proposed that, for any N 3 2 ,  
the model should have a percolation transition at density pc( N )  E (0,l). Chayes et al 
(1988) established that such a transition does indeed occur; moreover, it was shown 
that, in contrast to that of the ordinary percolation model, this transition is discon- 
tinuous (i.e. first order). In this letter, we prove the conjecture, also proposed by 
Mandelbrot (1983), that as N + 03, the thresholds p,( N )  converge to the percolation 
threshold of the ordinary square site lattice model. 

Below, we will first define the model precisely, and recapitulate the relevant results 
of Chayes et a1 (1988). We will then state and prove our theorem. 

Consider the unit square [0, 112, which we will denote by Ao. Let N a 2  be an 
integer and take p E (0 , l ) .  The square A. is subdivided into N 2  (closed) smaller units 

1 < i, j S N, each of which is independently ‘retained’ with probability p or ‘discarded’ 
with probability 1 - p .  The random subset of A. which has survived will be denoted 
by A,. For the second iteration, each surviving square of A ,  is subjected to the same 
subdivision and retention problem, which generates the random set A2. Further 
iterations follow the same scheme. Ultimately, one studies the statistical behaviour of 
the limiting set 

A ,  = n A ~ .  ( 2 )  
i 

t Work supported in part by NSF Grant no DMS-88-06552. 
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We will denote probabilities of events in the limiting set by R o b , , [  -1. The relevant 
percolation probability in this model is 

(3) 
The following basic properties-discussed by Mandelbrot ( 1983)-were established 

(I)  Let pa( N) = 1/ N 2 .  If p spa(  N), then with probability one, A, = 0, while if 

(11) For p >pO(N),  the Hausdorfl dimension of A, (given that A,# 0) is, with 

(111) There is a pd(N), with l / m < p d ( N )  s 1, such that for p <pd(N), with 

8 ( N , p )  = ProbN,p[Am contains a left-to-right crossing of [0,1]2]. 

formally by Chayes et a1 (1988). 

p > pa( N), then with positive (and computable) probability, A, # 0. 

probability 1, equal to 2 -[log p / N I .  

probability 1, A, is totally disconnected (or ‘dust-like’). 
On a slightly more refined level, the following was proved by Chayes et a1 (1988). 

in the sense that e ( N , p ) > O .  Furthermore: 
(IV) For all N 2 2, there is a p,( N) < 1, such that for p > pc( N), there is percolation 

(A) Pd(N)=Pc(N) and 
(B) according to a number of criteria, the phase transition is discontinuous: e.g. 

Combining the above results, we see that the model has (at least) three phases: a null 
phase, a dust-like phase and a percolating phase; furthermore, the final transition, 
which occurs at p,( N), is discontinuous. 

Concrete, rigorous estimates on the p c ( N )  are, as usual, difficult to achieve. For 
example, it was only established by Chayes et a1 (1988) that p,(3) < 1 - to be 
contrasted with Mandelbrot’s proposal (1983) that pc(3) = 0. Nevertheless, it is easy 
to show that unless p exceeds the percolation threshold for the square site lattice, 
which we denote by pc(site), there cannot be percolation in the fractal model for any 
value of N .  (A formal proof of this will be supplied below.) Conversely, when 
p > pc(site), then for large N, the system looks quite percolative-at least for the first 
few iterationst. Such considerations led Mandelbrot to conjecture that the large-N 
limit of p c ( N )  is, in fact, pc(site). A proof of this conjecture is the subject of this letter. 

@ ( N ,  Pc(N))  > 0. 

Theorem. Let p,( N )  denote the threshold value for percolation in the fractal percolation 
model with subdivision index N: 

p c ( N ) = i n f ( p l w w > O i  
and let pc(site) denote the percolation threshold for the usual square site lattice model. 
Then 

lim p,( N )  = pc(site). 
N-iE 

Remark. Naively, one might expect that the existence of the above limit (though not 
its value) could have been established simply by monotonicity of the sequence (p,(  N)). 
Although-on the basis of the ‘more is better’ principle-we expect such monotonicity, 
this has not been rigorously demonstrated. It is, however, easy to show monotonicity 
of various subsequences; for example, e( N, p )  s 8 ( N 2 ,  p )  which implies pc( N 2 )  s 
p c ( N ) .  

t In panicuiar, it was known to Chayes er a/ (1988) that if 8 and m are fixed, for any p > pc(site), one can 
produce an N large enough so that with probability exceeding 1 - 6, one will observe a left-to-right crossing 
after m iterations. 
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Roo$ We first suppose that p <p,(site). Denote by rz) those configurations in the 
Nth model that exhibit a left-to-right crossing of [0,1]* after n iterations of the process. 
Obviously, rg+’)c I‘g) and O(N, p )  = limN-tm P r ~ b ~ , ~ [ r $ ) ] .  

Now consider ordinary percolation on the square site (or any other ‘regular’ 
two-dimensional) lattice. It is known that, at the critical point, there is a universal 
(i.e. lattice-independent) constant c < 1, such that the probability of observing a 
left-to-right crossing of an N x N square is bounded above by c. This is, in fact, the 
key idea implicit in the proofs of Kesten (1980) and Russo (1981). and is discussed 
at some length by Chayes and Chayes (1986). For descriptions of the lattices for which 
such results can be proved, see Kesten (1982). 

It is clear that the observation of such a crossing in the square site model is 
equivalent to the event rg). Using the fact that the best possibility for the first n 
iterations is total retention (a minor miracle), it is straightforward to show that 

hOb, , [ rg+”Irg’]  S C. (4) 

PrOb,,[rg’] s Cn ( 5 )  

Indeed, (4) is established by applying the Harris-FKG inequality (Hams 1960, Fortuin 
et a1 1971) to each Bernoulli configuration w E rg). Thus, we have 

which tends to zero with n. Using the obvious monotonicity of e(  N, p) and the result 
(IVB), this establishes that for each N, rc( N) > p,(site). 

We now probe the less trivial half of the theorem: namely, if p > pc(site), then for 
all N sufficiently large, p > p , ( N ) .  However, it will pay if we first pause to again 
discuss the ordinary site model. In particular, we will outline a ‘renormalised bond 
construction’ along the lines of those developed by Aizenman er al(1983) and discussed 
in detail by Chayes and Chayes (1986). Denote by R ,  the 3m x m block: R ,  
{ x ~ 0 ~ x , ~ 3 m , 0 ~ x 2 ~ m } .  Consider the event, depicted in figure 1, that there is 
left-to-right connected crossing and two top-to-bottom connected crossings, one lying 
in the left third and the other in the right third, of R,, all of which are composed of 
retained (or ‘occupied) sites. We denote this event by B1 = %,(m). For p>pc(site), 
the probability of observing SB, tends to unity exponentially fast in m. Hence, for a 
fixed small E ,  (to be chosen later), let us assume that m has been chosen so large that 

P r ~ b , [ S B l ] s l - ~ , .  (6) 
(Here, of course, hob,[ -1 denotes probability with respect to ordinary Bernoulli 
measure at density p.) 
Now for an N x N square, with N >> m, we may construct a block-bond lattice, denoted 
by Dc“), whose ‘vertices’ are m x m squares and whose ‘edges’ are translates and 

Figure 1. A block-bond event, 
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rotations of R ,  (see figure 2 ) .  We may then do a percolation problem on D e )  by 
declaring a BED',"' to be 'occupied' when the corresponding translation and/or 
rotation of the event W, occurs. Observe that these block-bond events have been 
constructed so that a connected chain of such bonds necessarily implies the existence 
of a true underlying connection. Although the block events are not independent, as 
would be the case in a typical percolation problem, each event is correlated with only 
a few neighbouring events. Furthermore (and most importantly), the system is at 
exceedingly high density. 

Let us estimate the probability of achieving a left-to-right crossing of the N x N 
square via the block-bonds. In the absence of such a crossing, there would be a 
top-to-bottom crossing of the square consisting of a connected path of 'failed bonds,' 
as represented by events on the dual lattice (ID',"')*. A string of such failures of length 
n necessarily involves at least n/4 statistically independent failure events, since we 
may partition DC) into four disjoint sublattices within which the block-bond events 
are mutually independent. (See e.g. Russo (1978) for details of these types of argu- 
ments.) Let us denote by Zg)= E%)(m) the event 

Ex) = {wl there is a left-to-right connected crossing of the N x N 
square consisting of block-bond events on Dg)}. (7) 

Since the minimum block-bond path across an N x N square necessarily consists of 
at least N / 2 m  - 1 (overlapping) bond events, we may use the usual counting arguments 
to estimate 

for E,  sufficiently small. Here g < 3 is the relevant connectivity constant. 
Thus far, we have only demonstrated that percolation implies percolation-and, 

in fact, we have used somewhat outdated methods. Let us now resume the topic of 
the fractal models when p > pc(site). Suppose again that m is large and N still larger. 
If we focus, for the benefit of our first iteration, on the analogue of the event Eg) 
(which obviously implies r:)) then, so far, we are in good shape. In order to withstand 
a second iteration, we will define a second-stage bond event. Consider a configuration 
in which (the analogue of) the event W, occurs. In the rectangle Rm,N, those squares 
which produced the crossings-in addition to any other survivors-must subdivide. 
On these living regions, we again construct a block-bond lattice, i.e. a 'microblock' 

0 
0 

vertex 

edge 
Figure 2. A block-bond lattice. 
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lattice, consisting of 3m x m block units (the physical sizes of which are 3m/ N ’ x  
m/ N 2 ) .  Now we can watch for microblock-bond events which are small versions of 
(but entirely equivalent to) 58,. Let us insist that after the second retention problem, 
the relevant paths that produced the event 58, are underscored by corresponding paths 
comprised of the bond events on the microblock lattice. We denote this event by Bz. 
Explicitly, if the event B, has occurred on the rectangle R m / N ,  we consider the surviving 
region, R m / N  n A , ,  and the microblock lattice, D ( R m / N  n A l ) ,  on R m / N  n A , .  The 
event B2 means that within D( R m / N  n A , ) ,  there is a left-to-right crossing of R,,,  by 
a connected path of microblock-bond events, in addition to top-to-bottom crossings 
of R m I N  by such bonds in the left and right third. 

Given the event .5B1, it is easy to estimate the event 9,: using worst-case-scenario 
counting arguments, we have 

1 - f N , m ( E l ) *  

This yields the direct estimate 

(9) 

1 - & 2 =  P r o b ~ , p C B 2 I  (1 - f N . m ( & l ) )  1 - & I  - f N , m ( & l ) .  (10) 

The event E$) c I‘$) that [0,1]’ is crossed by second-stage bonds can now be estimated 
via equation (8) with 

We continue this procedure. At the ( k  + 1)th stage, we define the event B k + l  by 
first requiring that the event 58, occurs, and then insisting that the relevant paths are 
‘underscored’ by bond events comprised of translations and rotations of the event 5 8 k .  

We thus obtain the iterative inequality 

replacing E ] .  

1 - & & + I  1 - E 1  - f N . m ( E k )  (1 l a )  

i.e. 

& k + l  & l + f N , m ( & k ) .  (1lb)  

The situation will obviously get out of control for a poor set of initial conditions. 
Conversely, it is seen that for a reasonable set of initial conditions, the ( & k )  will hover 
just above E ~ .  All such considerations amount to an analysis of the fixed-point equation 

& * =  & l + f N , m ( & * ) .  (12) 

It is easy to see that, provided g ( & , ) l I 4 <  1, for N sufficiently large, there is a 
non-trivial fixed point e*(N,  m, E , )  with E * +  E ,  as N+m. The resulting E *  may then 
be fed into equation (8), which provides a lower estimate on e( N, p). Hence, all we 
need do is choose a large m, driving E ]  down, and then ensure that N is selected large 

cl enough. For such N, we have p > pc( N), the desired inequality. 

Concluding Remarks. It is obvious that these techniques also provide a more efficient 
proof of the original question of the non-triviality of p,( N ) .  It is, at this point, possible 
to obtain bad (as opposed to ridiculous) bounds for small N-e.g. Na6.  In the 
large-N regime, our proof demonstrates that if N is a huge (but fixed) multiple of the 
correlation length of the density-p site model, then p > pc( N). 
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